KGF prevents oxygen-mediated damage in ARPE-19 cells.

نویسندگان

  • R Christopher Geiger
  • Christopher M Waters
  • David W Kamp
  • Matthew R Glucksberg
چکیده

PURPOSE Oxidative stress has been implicated in a variety of diseases of the eye. In several other tissues, keratinocyte growth factor (KGF) has been shown to prevent negative cellular changes associated with oxidative insult, such as permeability increases and nuclear DNA damage. In this study, we looked at whether KGF provided these same protective effects to cultured human retinal pigmented epithelial (RPE) cells (ARPE-19). METHODS Reverse transcriptase-polymerase chain reaction (RT-PCR) using a published primer pair sequence followed by restriction endonuclease digestion with AvaI and HincII was used to look for the KGF receptor message in ARPE-19 cells. Cellular response to KGF was verified through proliferation assays and Western blot analysis for mitogen-activated protein kinase (MAPK). Single-cell gel electrophoresis was used to assess DNA damage, Western blot analysis was used to assay actin cytoskeletal changes, and electrical resistance and tracer experiments with Transwell tissue plates were used to assess permeability changes. Immunostaining was used to verify the existence of the tight junction protein occludin. RESULTS It was verified through RT-PCR that the ARPE-19 cell line exhibited the message for FGFR2-IIIb, otherwise known as KGFR. KGF was also shown to increase cellular proliferation and activated the MAPK p44/p42 cascade. KGF ameliorated nuclear DNA damage and cytoskeletal rearrangement caused by oxidative stress through the addition of exogenous hydrogen peroxide but was unable to prevent permeability changes. CONCLUSIONS KGF was shown to significantly reduce DNA damage and cytoskeletal rearrangement caused by oxidative stress in cultured ARPE-19 cells. This result may be useful in targeting future therapies to combat a multitude of diseases of the eye that result from increases in reactive oxygen species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress

Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells c...

متن کامل

The Benefits of the Citrus Flavonoid Diosmin on Human Retinal Pigment Epithelial Cells under High-Glucose Conditions.

We investigate diosmin for its effect on the ARPE-19 human retinal pigment epithelial cells exposed to high glucose, a model of diabetic retinopathy (DR). After incubation for 4 days with a normal (5 mmol/L) concentration of D-glucose, ARPE-19 cells were exposed separately to normal or high concentrations of D-glucose (30 mmol/L) with or without diosmin at different concentrations (0.1, 1, 10 μ...

متن کامل

Protective effect of canolol from oxidative stress-induced cell damage in ARPE-19 cells via an ERK mediated antioxidative pathway

PURPOSE Oxidative stress damage to retinal pigment epithelial (RPE) cells is thought to play a critical role in the pathogenesis of age-related macular degeneration (AMD). This study was conducted to investigate the protective effect of canolol against oxidative stress-induced cell death in ARPE-19 cells and its underlying mechanism. METHODS ARPE-19 cells, a human retinal pigment epithelial c...

متن کامل

PRDX6 Protects ARPE-19 Cells from Oxidative Damage via PI3K/AKT Signaling.

BACKGROUND/AIMS Oxidative stress that damages cells of the retinal pigment epithelium (RPE) can cause the development of hereditary retinal disease (HRD). PRDX6, which is a member of the PRDX family, is essential for removing metabolic free radicals from the body. However, the effect of PRDX6 on oxidative stress in HRD remains unknown. In this study, we sought to investigate the role of PRDX6 i...

متن کامل

17-β estradiol protects ARPE-19 cells from oxidative stress through estrogen receptor-β.

PURPOSE To elucidate the mechanism of 17-β estradiol (17β-E(2))-mediated protection of retinal pigment epithelium (RPE) from oxidative stress. METHODS Cultured ARPE-19 cells were subjected to oxidative stress with t-butyl hydroxide or hydrogen peroxide in the presence or absence of 17β-E(2). Reactive oxygen species (ROS) were measured using H(2)DCFDA fluorescence. Apoptosis was evaluated by c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 46 9  شماره 

صفحات  -

تاریخ انتشار 2005